P4 (part 2) Special Factoring

U – Method To factor a trinomial that is in quadratic form

 $au^2 + bu + c$, where u is something weird

- 1. Replace the first variable with u^2 and replace the middle variable with u-(off to the side write what u = ???)
- 2. Factor in *u*
- 3. Replace u with what it equals in terms of the middle variable

Examples

Factor

1.
$$x^4 - 8x^2 - 48$$

1.
$$x^4 - 8x^2 - 48$$
 2. $a^2b^2 + 5ab - 36$

To factor the difference of two squares and perfect-square trinomials

Difference of two Perfect Squares:

$$a^2 - b^2 = (a + b)(a - b)$$

- First term is a perfect square: a^2
- Second term is a perfect square: b^2
- Has a minus sign between the terms.

Examples

Factor:

1.
$$x^2 - 100$$

1.
$$x^2 - 100$$
 2. $25x^2 - 16$ 3. $x^6 - 324$

$$3. x^6 - 324$$

Perfect-square Trinomials:

$$a^2 + 2ab + b^2 = (a + b)^2$$

$$a^2 - 2ab + b^2 = (a - b)^2$$

- First term is a perfect square: a^2
- Third term is a perfect square: b^2
- Second term is twice the product of a and b: 2ba

ALWAYS PAY ATTENTION TO SIGNS

Examples

Factor

1
$$v^2 - 8v + 16$$

1.
$$y^2 - 8y + 16$$
 2. $25x^2 + 60xy + 36y^2$

To factor the sum or difference of two perfect cubes

A perfect cube is a number that has the same three factors.

Sum or Difference of Two Perfect Cubes

First term is a perfect cube: a³ Second term is a perfect cube: b³

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

 $a^3 - b^3 = (a - b)(^2 + ab + b^2)$

ALWAYS PAY ATTENTION TO SIGNS

Examples

Factor

1.
$$x^3 + 64$$

1.
$$x^3 + 64$$
 2. $r^3 - 27m^3$

To factor completely

Factoring Checklist

- 1. Always check for a Greatest Common Factor.
- 2. Count the number of terms:
 - 4 terms factor by grouping
 - 3 terms check if it is a perfect-square trinomial, trinomial with "a", trinomial without "a"
 - 2 terms difference of two squares or sum/difference of two cubes
- 3. Make sure each factor is completely factored.

Examples

Factor completely

1.
$$x^4 - 7x^3 + 10x^2$$

1.
$$x^4 - 7x^3 + 10x^2$$
 2. $x^3 + x^2 - 4x - 4$ 3. $x^4 - 81$

3.
$$x^4 - 81$$